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We consider Brownian motion on a line terminated by two trapping points. A bias term in the form of
a telegraph signal is applied to this system. It is shown that the first two moments of survival time exhib-

it a minimum at the same resonant frequency.

PACS number(s): 05.40.+]

I. INTRODUCTION

The phenomena encompassed by the terminology “‘sto-
chastic resonance’ has been studied by many investiga-
tors, motivated by applications in both the biological and
physical sciences [1]. The general subject area deals with
interactions between noise and a periodic force jointly
driving mainly nonlinear dynamical systems. However,
there is one form of stochastic resonance, henceforth re-
ferred to as coherent stochastic resonance (CSR), whose
properties were studied in Ref. [2], which has been shown
to appear in linear systems. A typical example of this is
diffusion along a line terminated by two traps, with the
diffusing particle performing motion biased by an oscil-
lating field. A physical system to which this applies is
pulsed-field gel electrophoresis [3]. Recently, this type of
analysis has been extended to the study of a similar sys-
tem on a semi-infinite line in [4], in which case a field
must be added in order to ensure that the particle reaches
the trap with probability 1. While CSR has been demon-
strated in [4], the analysis is flawed [5], but nevertheless
leads to qualitatively correct results.

A parameter useful in describing the behavior of such
systems is the mean survival time of the particle, or
mean-first-passage time (MFPT), that is, the average time
the particle diffuses until it is finally trapped. It was
shown in [2] that the MFPT, considered as a function of
the frequency of the bias field, (7 (w)), exhibits a
minimum at some frequency of the driving field. A simi-
lar result is that there is a bifurcation, again depending
on w, in the behavior of {( T') considered as a function of
the magnitude of the bias [6]. That is, for some values of
® the MFPT increases as a function of the amplitude,
while for others it decreases.

The analysis necessary to derive these results was based
either on the simulation of a random walk on a lattice or
on a perturbation expansion of the solution to the
diffusion limit to such a walk described by

2
%%=D§%—v cos(a)t)g% , (1)
x

where D and v are constants. This is to be solved subject
to the boundary conditions p (0,2)=p(L,¢)=0. While a
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solution of the resulting problem might seem to be
straightforward to find, this does not prove to be the case.
Several variants of this type of problem has been studied
in the literature of applied probability [7], with results
mainly given in terms of a numerical algorithm for solv-
ing the relevant integral equation. It is therefore natural
to inquire as to whether the problem cannot be modified
to lead to a solution not based on either simulation or a
perturbation expansion.

In the present paper we consider the same problem, re-
placing the pure sinusoid in Eq. (1) by the telegraph sig-
nal

+vy, tE€[2nAT,(2n +1)AT]

t€[2n +DAr,2n+2)A7], @

v(t)= —v,

v, being a constant. This model is developed in order to
simplify the mathematical development and to derive re-
sults without resorting to an assumption of a small ampli-
tude for the forcing term. The basic idea behind our cal-
culation is that a diffusion equation with a constant bias
can be solved exactly. A solution valid over the entire
time axis is then obtained by matching solutions at the
times at which the telegraph signal changes sign. Notice
that the problem discussed here is not quite the same as
that posed 1n Eq. (1) since a Fourier expansion of the tele-
graph signal has an infinite number of frequencies rather
than the single frequency inherent in that formulation.
Nevertheless, we can define an effective frequency for
such a signal as @=(2A7) " ! and show that the same CSR
exists for this form of the bias field. Thus, we seek the
solution to a dynamical system whose evolution is
governed by the equation

X=£&n+v(1), (3)

where £(¢) is Gaussian white noise and v (#) is the tele-
graph signal defined in Eq. (2). We assume traps set at
x=0 and x =L, and show that the first two cumulants of
the survival probability exhibit resonant behavior at the
same frequency.
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II. DESCRIPTION OF THE BASIC FUNCTIONS

The endpoint for our analysis consists of expressions
for the MFPT and the variance of the first-passage time
diffusing particle for which X (0)=x,. The advantage of
using a telegraph signal to model the bias term is that an
exact solution to the diffusion equation can be derived.
Hence we derive the following results by decomposing
the time into periods during which the bias is constant,
find a solution in each interval and match solutions at the
change points.

Since the resulting dynamical system is a regenerative
one in the sense of Smith [8], it is necessary to study the
evolution of the system at the change points. For this
purpose we define a pair of sets of state densities at the
change points, {P,, (x)} and {P,,(x)}, n =0,1,2, ...,
where, for example,

Py, 1 (x)dx =Pr{x <X[(2n +1)Ar]<x +dx}, 4

with the set {P,,(x)} defined similarly. We need also to
define two propagators, denoted by p, (x,tly) and
p_(x,t|y), in which

P+ (x,tly)dx =Pr{x <X(t)<x +dx|X(0)=y ;
v(T)=+v,y, TE(0,8)} ; (5)

a similar definition holds for p _(x,t|y), with the sign of
v () being negative. Since the bias field is piecewise con-
stant it follows that {P,, ;(x)} and {P,,(x)} satisfy the
recurrence relations

P2n+l(x): fOLPZn(y)p+(x’t|y)dy >

(6)
Py ()= [Py ) (xtly)dy, n21.

The initial condition implies the additional relation
Py(x)=58(x —xg).

In order to calculate the moments of the time to trap-
ping we need an expression for the survival probability
for a particle that is initially at x,. This will be denoted
by S(t[xy). Let {T™(x,)) be the mth moment of the
time to trapping. This can be related to S (¢|x,) by

(T(xg)y=m [ "1™ 'S (tlxo)dt . (7)

The function S(¢|x,) will, in turn, be decomposed into
the contributions from intervals in which v(tlxo) has a
constant sign as

©

S(tixo)z 2 [SZn(t|x0)+5'2n+1(t|x0)] ’ (8)
n=0

where, for example, S,,(t|x,) is the survival probability
during the 2nth interval. The term S,,(t|x,) can be ex-
pressed in terms of the probability densities defined in the
preceding paragraph as

So(t|x0)=fOLp_(x,t|x0)dx ,
San(t1x0)= [ "Pa,(y)dy
L
X — ) —2 > -—>— H
fop (x,t —2nA7|y)dx, n=1

9
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and S,, +(t|x,) can similarly be related to the functions
P,,+1(x) and p, (x,tly). The combination of the last

three equations implies that the mean first-passage time is
equal to

(TN = [ Tar ["p_(x,tlx)dx

* L L AT
+ El fo dx fo Pz,,(y)dyfo p o (x,tly)dt

nd L L
+ 3 Jyax [ Pansidy

XfoATp_(x,tIy)dt .10

Because of the infinite sums that appear here and in
representations of other quantities, it proves convenient
to introduce generating functions for P;(x). According-
ly, we define the generating functions

Uo(x35lx0)= 3 Poyiy(x)s> ™1,

n:O (11)
U_(x;slxg)= 3 P,,(x)s*",
n=0
which, because of Eq. (6), are related by
U, (x;s|xy)=s fOLU_(y,sto)p+(x,A7-|y)dy ,
(12)

U_(x;s|xg)=8(x —x;)
+s fOLU+(y;s|x0)p_(x,A7'|y)dy .

These can be combined into a single integral equation for
U, (x;s|xq):

U, (x;slxg)=sp 4 (x,AT]|xq)
+52 [ U @5slxoK (x,2)dz , - (13)
in which the kernel K (x,z) is
K(x,z)=fOLp+(x,AT|y)p_(y,ArIz)dy . (14)

The generating functions defined in Eq. (11) allow
(T (x,)) to be expressed as

(T(xo))=fOLU_(x;1|x0)q+(x)dx
L
; 15
+fo U, (x;1xg)g_(x)dx , (15)
where the functions g, (x) are defined by
_rL At
qi(x):fo dy fo Py tlx)dx . (16)

Relations similar to Eq. (15) can also be written for mo-
ments of order higher than the first. Since it is easy to
solve the diffusion equation in a constant field, it is possi-
ble to write a straightforward algorithm to generate the
functions that exhibit CSR.

III. NUMERICAL RESULTS
A. First moment

The results to follow will always be expressed in terms
of dimensionless units, which is equivalent to setting the
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coefficients of the biased diffusion equation equal to 1. A
change of variables that ensures this end consists of
defining a dimensionless spatial variable £ and a dimen-
sionless time 6 by

v . 2
=—x, 0=—1

D D 17

in which case the equations satisfied by the two functions
p+(&,0|&,) become
2

s _OPs, P (18)

a6 3&? 13
The density p, satisfies the initial conditions
P4 (£,01&)=8(E—&,) and the two densities must be
found subject to boundary conditions that reflect the fact
that £&= and §=A(=vyL /D) are trapping points, which
is to say that p(0,0|&)=pi(A,0/&)=0. To con-
veniently write the required solutions, define the variables
B,=nm/A. Because Eq. (18) has constant coefficients the
solution to it in any segment with a constant bias is found
quite straightforwardly as

2
P+(£,616)="exp[£3(6—&))]

X 3 expl— (B2 +1)6]

n=0
Xsin(B,&q)sin(B,€) . (19)

A tedious but straightforward calculation outlined in the
Appendix and based on this solution allows us to express
the mean first-passage time in the form of a Fourier
series:

—§0/2

(T(wl&))=e S T (w)sin(Biéo) » (20)
k=1

where the frequency o has been defined earlier. The
functions T} (w) are, in turn, expressed as a double sum
whose exact form is given in the Appendix. A similar ex-
pansion can be derived for the second moment
(T w|&,)), which, together with Eq. (20), can be used to
find the variance of the first-passage time. It is trivial to
calculate similar results from Eq. (20) when & is uniform-
ly distributed over the interval (0,A).

Figure 1 indicates the degree of resonant behavior ex-
hibited in ( T(w|&y)). This is plotted as a function of
for a peak initially at £,=A /2. If the resonant frequency
is denoted by w,(A) then this function is found to have
the scaling form

Ores( A)~vo /A (21)

for large A, where v, is a constant which agrees with re-
sults of the calculation in [2]. The reason for this
behavior is, as in the cited reference, due to coherent
motion orchestrated by the periodic bias. At early times,
since v(0) >0, trapping is enhanced at £=A. When the
signal reverses sign trapping is enhanced at £=0, and so
forth. When @ becomes very large this enhanced trap-
ping effect operates over short time intervals, which tends
to enhance the effect of diffusion. High frequency bias
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FIG. 1. The MFPT (T (w|&,)) plotted as a function of » for
A=4and §,=2.

therefore causes the system to behave as if there were no
periodic forcing term.

Another result first demonstrated in [2] is the depen-
dence of (T(A|w)) on length, the notation signifying
that we have now emphasized the behavior of the MFPT
as a function of the segment length A rather than of w.
Our numerical calculations indicate that, when o7 o,

(T(Alw)) =aA? - (22)

as indicated in Fig. 2(a), which switches over to
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FIG. 2. (a) The mean-first-passage time plotted as a function”
of the interval length for w7 w,.,. The curve shown is fitted to a
quadratic function of the length and indicates that the system is
primarily diffusive. (b) The same plot for ®=w,. The fit to a
straight line is consistent with coherent behavior.
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(T(Alo,)) =BA (23)

at the resonant frequency, where a and S8 are constants.
This behavior is illustrated by the curve shown in Fig.
2(b). Notice that Eq. (22) is the dependence expected for
unbiased diffusion, while the form of Eq. (23) coincides
with the result expected for biased diffusion.

B. Variance of the first-passage time

In this section we show that not only does the MFPT
exhibit resonant behavior as the frequency of the driving
signal is changed, but the associated variance,

o w|&)=(THwl&)) —(T(w|&))?, (24)

also exhibits a minimum which appears also to be located
at ®=w,, An argument that closely parallels that lead-
ing to Eq. (15) leads to an integral representation for
(T?) that can be expressed as

(12)=2 [ {[U+(§1l6)r - (©)+ U_(&1]Eo)r 1 (§)]
+AT[V (£1]E))g_ (&)
+V_(&1lE)g 4 (E)]1}dE, (25)

in which the functions 7, (§) and V. (&;1|&,) are defined
by

ru(©= [ g [ ipu (o tlerde (26)
and

UL (&;5l&)
Vi(g;1|§o)=—i§s—§"— L 27)

Finally, we can write an expression for { T%(w|&,)) which
has the same form as a Fourier series as Eq. (20), except
that the function T (w) is to be replaced by another func-
tion somewhat more complicated in form.

Numerical evaluations of the resulting formulas sug-
gest that both the second moment and the variance ex-
hibit resonant behavior and the resonant frequency in
both cases is the same as that for the first moment. A
plot of oX(wl|£&,) as a function of ® is shown in Fig. 3(a).
The same qualitative resonant behavior is observed for an
initial condition uniformly distributed over the initial in-
terval,

L
- [foelénde, , 8)

ol w)=

as is exemplified by the plot in Fig. 3(b).

IV. CONCLUSIONS

We have studied the behavior of the first two moments
of the first-passage time for a particle simultaneously
driven by additive white noise and a periodic square
wave. The use of a dichotomous signal rather than a
pure sinusoid as in [2] simplifies many of the calculations
in this system and shows that the observed resonant
behavior is not a unique feature of the purely sinusoidal
forcing term. Generally, the phenomenon of stochastic
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resonance requires that the system dynamics be non-
linear. In the present case resonant behavior is due to
coherence of motion induced by the periodic forcing
term. We have also shown that the same type of
coherent resonance occurs in the second moment and the
variance, the resonant frequency apparently coinciding
with the one found in the case of the first moment. A
natural conjecture is that this will also be true for mo-
ments higher than the second, but we have not investigat-
ed this point. We have also looked for CSR when the
periodic telegraph signal is replaced by a random tele-
graph signal, but have so far been unable to demonstrate
the existence of such an effect. One might, for example,
expect to see such behavior, at least over some interval of
time, in a model in which the times between successive
change points is random. Such randomness would be de-
scribed by a sequence of probability densities {v,(z)},
where, for example, ¥,(1)=ke ¥ and lim,_,, ¥,(t)
=§(t —At). Finally, we point out that the present work
is related to results in [4]. However, while the results in
that paper are qualitatively correct, the authors there
have used the method of images inappropriately [8], lead-
ing to some incorrect quantitative results.
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FIG. 3. (a) A plot of the variance of the first-passage time,
oX(w|&), plotted as a function of w for the parameters A=4 and
&,=2. To graphical accuracy the parameter o, is the same as
is found for the mean-first-passage time as indicated in Fig. 1.
(b) The variance uniformly weighted with respect to &, over the
interval for A=4.
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APPENDIX

An explicit form of the solution for p (€, 6|&,) is given
in Eq. (19) from which it is possible to show that the ker-
nel X (u,v) in Eq. (14) has the form

4 C —(B+B+1/2)Ar
K(u,v)= e(1/2)(u+u) 2 e i TPj

L? =1
XIysin(B,u)sin(B,v) ,
(A1)
in which the constants I;; are
= OLe ~Esin(B,€)sin(B;§)d &
i 1
=1—(—1) e F] | ————
gl ] 1+(B;,—B;)?
1
t—— . (A2)
1+(B; +B;)

Because 32, is proportional to m? the series in Eq. (29)
will generally be convergent, requiring only a few terms
for graphical accuracy.

Notice that the expression for ( T(£,)) in Eq. (15) in-
volves only the functions Ui(é‘;slé‘o) evaluated at s=1.
It therefore suffices to consider the integral equations for
U. (& 1]&,) to calculate this function. The integral equa-
tion satisfied by U | (&;1]&,) is

U (&1160)=p+ (&A7lE0)+ [ K (£,2)U 4 (z;1180)dz .
(A3)

Once U, (&;1]£y) is known U_(&;1]&,) can be found
from it by the relation

U_(&1160)=8(6—E)+ [ U (23 11g0)p - (£, Arlz)dz .
(A4)

Since Eq. (A3) is a Fredholm equation one can write its
solution in terms of a resolvent function R (§,z) [9] as

U, (&11E)=p 4 (& ATIE)+ fOLR(é',z)p+(z,AT|§o)dz ,
(A5)

where the resolvent can be written as a double sum

4025

)
R (§’2)=e(1/2)(§+z) E e (B[+Bj)ATR,-jsin(B,-é‘)sin(sz) .
ij

(A6)

The R;;, in turn are written in terms of a sequence of

functions I }j”) which are calculated from a recurrence re-

lation of the form

(2 2 r
=3 Py g0, (A7)
7S
with Ij)=1I,;, this being defined in Eq. (A2), and
L . .
J,.j=fo efsin(B,&)sin(B,€)d €
- 1
=1[(—1)Tlel—1] | ————
2 1+(B;—B; )
-t (A8)
1+(B;+8;)
These definitions allow us to write R jasa single sum,
2n
Rij= 21 % Ii(jn)e—'nAT/Z . (A9)
e

Again, because of the exponential terms in Egs. (A7) and
(A9), a numerical evaluation of the indicated series offers
no difficulties in practice.

The function U (£;1|€,) is then expressed in terms of
two functions which we denote by p;; and u/*). The first
of these can be expressed in terms of R;; through the rela-
tion

—B2A
pa=2e g TJIjRij (A10)
i
and the second is defined in terms of the p;; by
2 —£,/2 —B3Ar .
wr=2 2 9 18, +e P p, Isin(BiEy) . (A11)
1

Finally, the function U (&;1|&,) is related to the resol-
vent R (€,z) by

_ —(B2+1/2)Ar
UL (E1lE)=e 523 e ¥
i

u!Tsin(B;€) . (A12)

Likewise, it is readily shown that U _(&;1]&,) can be writ-
ten in terms of a function u ,-(‘ ) which is defined by

2 ~BiAr

ul==Se Jyui™) . (ALY
A4
The relation is
U_(&11£0)=8(E— &) +e <2
—(B? T
(B;+1/2)A ui(i)Sin(Big) . (A14)
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